

Variation can have physi W*n 09

Genes code for physical features in humans

This includes physical features

Identical twins appear very similar

This also includes the physical features of their brains (structure, neurotransmitters etc)

We know these things are likely to influence behaviour

Complex quantitative traits

E.g., Height, Cognitive ability, Hyperactivity, Antisocial behaviour

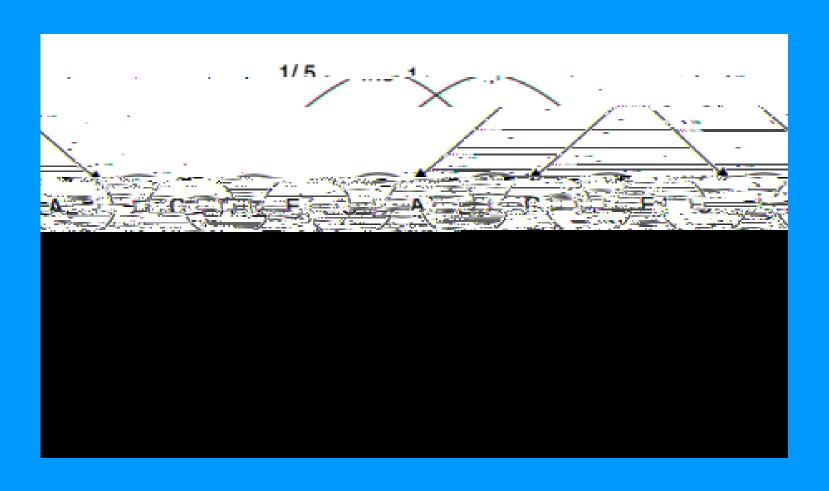
Lots of different sources of variation

- Environment influences
- Lots (100s?) of genes each of small effect

Why worry about genetics?

Genetic effects appear important in explaining behavioral variance

genetic designs may be genetic effects in disguise


The classical twin study

- Compares MZ (identical) and DZ (50% similar)
- Estimates

•

ACE Structural equation model

Conduct Problems

rMZ = .66, rDZ = .38

Additive genetics = .56

Common environment = .10

specific Environment = .34

Virginia Twin Study, Eaves et al., 1997

Social class in the Classical Twin design

Contribute to C estimate?

- C estimates tend to be low (although upper CI may be high)
- Effects may differ between children in same family (eg one twin may be more resilient)

Gene-Environment interaction

Genes have different effect on behaviour depending on environment

Response to environmental stimulus moderated by genetic make-up

Genetic x SES interaction for IQ

Gene-Environment correlation

Conclusions

- Genetics appear to account for a large proportion of variance in behaviour
- Offer an important opportunity to learn about environmental effects
 - (Also see MZ-Difference designs)
- SEMs being developed to estimate GxE correlation and interaction simultaneously

